Reasoning and Problem Solving Step 5: Compare and Order Less than 1

National Curriculum Objectives:

Mathematics Year 5: (5F3) <u>Compare and order fractions whose denominators are all multiples of the same number</u>

Differentiation:

Questions 1, 4 and 7 (Reasoning)

Developing Explain whether a statement is correct when comparing two fractions less than 1 where the denominator is double or half of the starting fraction. Draw a diagram to check.

Expected Explain whether a statement is correct when comparing two fractions less than 1 whose denominators are all multiples of the same number or have common numerators. Draw a diagram to check.

Greater Depth Explain whether a statement is correct when comparing two fractions less than 1 whose denominators are not direct multiples but have a common factor or have common numerators. Draw a diagram to check.

Questions 2, 5 and 8 (Problem Solving)

Developing Use digit cards to complete a more/less than statement comparing fractions less than 1 where the missing denominator is the same, double or half of the starting fractions.

Expected Use digit cards to complete a more/less than statement comparing fractions less than 1 where the missing denominators are all multiples of the denominator of the starting fraction.

Greater Depth Use digit cards to complete a more/less than statement comparing fractions less than 1 where the missing denominators are not direct multiples but have a common factor with the denominator of the starting fraction.

Questions 3, 6 and 9 (Reasoning)

Developing Find the mistake when ordering fractions less than 1 where the denominator is double or half of the starting fraction.

Expected Find the mistake when ordering fractions less than 1 whose denominators are all multiples of the same number.

Greater Depth Find the mistake when ordering fractions less than 1 whose denominators are not direct multiples but have a common factor.

More Year 5 and Year 6 Fractions resources.

Did you like this resource? Don't forget to <u>review</u> it on our website.

classroomsecrets.co.uk

Compare and Order Less than 1

Compare and Order Less than 1

1a. Wynter is comparing $\frac{17}{22}$ and $\frac{9}{11}$.

1b. Xin is comparing the fractions $\frac{6}{9}$ and

I know that is $\frac{17}{22}$ bigger than $\frac{9}{11}$ because 17 is bigger than 9.

I know that $\frac{6}{8}$ is larger than $\frac{1}{4}$ because it is equivalent

5 R

5 PS

Is she correct? Show how she could use a diagram to check her answer.

2a. Use two number cards to complete

Is he correct? Show how he could use a diagram to check his answer.

the equation.

5 R

5 PS

2b. Use two number cards to complete the equation.

$$\frac{1}{6} < \frac{\boxed{}}{\boxed{}} < \frac{3}{6}$$

Find two possibilities.

Find two possibilities.

3a. Kyle has put these fractions in ascending order.

3b. Holly has put these fractions in ascending order.

$$\frac{7}{8}$$
, $\frac{5}{8}$, $\frac{7}{16}$, $\frac{1}{16}$

$$\frac{1}{5}$$
, $\frac{3}{10}$, $\frac{4}{5}$, $\frac{7}{10}$

Explain his mistake.

Explain her mistake.

Rewrite the fractions in the correct order as equivalent fractions.

Rewrite the fractions in the correct order as equivalent fractions.

Compare and Order Less than 1

Compare and Order Less than 1

4a. Luna is comparing the fractions $\frac{2}{9}$ and $\frac{2}{3}$.

I know that $\frac{2}{9}$ is larger than

 $\frac{2}{}$ because a ninth is three

times bigger than a third.

4b. Yussuf is comparing the fractions $\frac{6}{7}$ and $\frac{19}{21}$.

I know that $\frac{19}{21}$ is larger than $\frac{6}{7}$ because it is equivalent

5 R

Is she correct? Show how she could use a diagram to check her answer.

Is he correct? Show how he could use a diagram to check his answer.

5 R

5b. Use two number cards to complete

5a. Use two number cards to complete the equation.

the equation.

$$\frac{7}{11} < \frac{}{} < \frac{8}{11}$$

5 PS

Find two possibilities.

Find two possibilities.

5 PS

6a. Callum has put these fractions in ascending order.

6b. Julia has put these fractions in descending order.

$$\frac{1}{8}$$
, $\frac{3}{4}$, $\frac{7}{32}$, $\frac{11}{16}$

$$\frac{19}{28}$$
, $\frac{3}{14}$, $\frac{4}{7}$, $\frac{1}{2}$

Explain his mistake.

Explain her mistake.

Rewrite the fractions in the correct order as equivalent fractions.

Rewrite the fractions in the correct order as equivalent fractions.

Compare and Order Less than 1

Compare and Order Less than 1

7a. Fran is comparing the fractions $\frac{o}{25}$

and $\frac{13}{30}$.

They are both in the 5 times tables so I can divide by 5 to find equivalent fractions.

7b. Mallory is comparing the fractions $\frac{7}{18}$ and $\frac{19}{45}$.

They are both in the 9 times table so I can use this to find equivalent fractions with a common denominator of 90.

Is she correct? Show how she could use a diagram to check her answer.

Is he correct? Show how he could use a diagram to check his answer.

5 R

5 R

8a. Use two number cards to complete the equation.

8b. Use two number cards to complete the equation.

$$\frac{10}{32} < \frac{}{} < \frac{17}{32}$$

225

96

Find two possibilities.

5 PS

Find two possibilities.

5 PS

9a. Mo has put these fractions in ascending order.

$$\frac{7}{20}$$
, $\frac{11}{20}$, $\frac{17}{45}$, $\frac{83}{90}$

9b. Mildred has put these fractions in descending order.

$$\frac{17}{35}$$
, $\frac{9}{14}$, $\frac{1}{7}$, $\frac{3}{35}$

Explain his mistake.

Rewrite the fractions in the correct order as equivalent fractions.

Explain her mistake.

Rewrite the fractions in the correct order as equivalent fractions.

Reasoning and Problem Solving Compare and Order Less than 1

Reasoning and Problem Solving Compare and Order Less than 1

Developing

1a. Wynter is not correct. Example answer: she could use a bar model which shows that $\frac{9}{11} = \frac{18}{22}$ and $\frac{18}{22} > \frac{17}{22}$.

2a. $\frac{2}{6}$, $\frac{5}{12}$ ($\frac{2}{5}$ is also a possibility but

not expected at this stage).

3a. Kyle has put the fractions in descending order. $\frac{1}{16}$, $\frac{7}{16}$, $\frac{10}{16}$, $\frac{14}{16}$

Developing

1b. Xin is correct. Example answer: he could use a bar model which shows that $\frac{6}{8}$ is bigger than $\frac{2}{8}$.

2b.
$$\frac{3}{9}$$
, $\frac{7}{18}$

3b. Holly has ordered the fractions by the numerators. $\frac{2}{10}$, $\frac{3}{10}$, $\frac{7}{10}$, $\frac{8}{10}$

Expected

4a. Luna is not correct. Example answer: she could use a bar model which shows that $\frac{2}{3} > \frac{2}{9}$, as each third is larger than each ninth.

5a.
$$\frac{8}{15}$$
, $\frac{5}{10}$

6a. Callum has ordered the fractions from the numerators. $\frac{4}{32}$, $\frac{7}{32}$, $\frac{22}{32}$, $\frac{24}{32}$

Expected

4b. Yussuf is correct. Example answer: he could use a bar model which shows that $\frac{6}{7} = \frac{18}{21}$ and therefore $\frac{19}{21} > \frac{18}{21}$.

5b.
$$\frac{15}{22}$$
, $\frac{22}{33}$

6b. Julia has put the fractions by denominator in descending order.

$$\frac{19}{28}$$
 , $\frac{16}{28}$, $\frac{14}{28}$, $\frac{6}{28}$

Greater Depth

7a. Fran is not correct. Example answer: she could use a bar model which shows that $\frac{8}{25}$ and $\frac{13}{30}$ can not be divided by 5 and produce a whole number as a numerator.

8a.
$$\frac{9}{25}$$
, $\frac{46}{225}$, $\frac{80}{225}$

9a. Mo has ordered the fractions by their denominator but has not found equivalent

fractions.
$$\frac{63}{180}$$
 , $\frac{68}{180}$, $\frac{99}{180}$, $\frac{166}{180}$

Greater Depth

7b. Mallory is correct. Example answer: he could use a bar model which shows that $\frac{1}{18} = \frac{5}{90}$ and $\frac{19}{45} = \frac{38}{90}$.

8b.
$$\frac{8}{24}$$
, $\frac{31}{96}$, $\frac{37}{96}$

9b. Mildred has ordered the fractions by the numerators. $\frac{45}{70}$, $\frac{34}{70}$, $\frac{10}{70}$, $\frac{6}{70}$